5 research outputs found

    Pulmonary Nodule Classification in Lung Cancer from 3D Thoracic CT Scans Using fastai and MONAI

    Get PDF
    We construct a convolutional neural network to classify pulmonary nodules as malignant or benign in the context of lung cancer. To construct and train our model, we use our novel extension of the fastai deep learning framework to 3D medical imaging tasks, combined with the MONAI deep learning library. We train and evaluate the model using a large, openly available data set of annotated thoracic CT scans. Our model achieves a nodule classification accuracy of 92.4% and a ROC AUC of 97% when compared to a “ground truth” based on multiple human raters subjective assessment of malignancy. We further evaluate our approach by predicting patient-level diagnoses of cancer, achieving a test set accuracy of 75%. This is higher than the 70% obtained by aggregating the human raters assessments. Class activation maps are applied to investigate the features used by our classifier, enabling a rudimentary level of explainability for what is otherwise close to “black box” predictions. As the classification of structures in chest CT scans is useful across a variety of diagnostic and prognostic tasks in radiology, our approach has broad applicability. As we aimed to construct a fully reproducible system that can be compared to new proposed methods and easily be adapted and extended, the full source code of our work is available at https://github.com/MMIV-ML/Lung-CT-fastai-2020

    2D and 3D U-Nets for skull stripping in a large and heterogeneous set of head MRI using fastai

    Get PDF
    Skull stripping in brain imaging is the removal of the parts of images corresponding to non-brain tissue. Fast and accurate skull stripping is a crucial step for numerous medical brain imaging applications, e.g. registration, segmentation and feature extraction, as it eases subsequent image processing steps. In this work, we propose and compare two novel skull stripping methods based on 2D and 3D convolutional neural networks trained on a large, heterogeneous collection of 2777 clinical 3D T1-weighted MRI images from 1681 healthy subjects. We investigated the performance of the models by testing them on 927 images from 324 subjects set aside from our collection of data, in addition to images from an independent, large brain imaging study: the IXI dataset (n = 556). Our models achieved mean Dice scores higher than 0:978 and Jaccard indices higher than 0:957 on all tests sets, making predictions on new unseen brain MR images in approximately 1.4s for the 3D model and 12.4s for the 2D model. A preliminary exploration of the models’ robustness to variation in the input data showed favourable results when compared to a traditional, well-established skull stripping method. With further research aimed at increasing the models’ robustness, such accurate

    2D and 3D U-Nets for skull stripping in a large and heterogeneous set of head MRI using fastai

    Get PDF
    Skull stripping in brain imaging is the removal of the parts of images corresponding to non-brain tissue. Fast and accurate skull stripping is a crucial step for numerous medical brain imaging applications, e.g. registration, segmentation and feature extraction, as it eases subsequent image processing steps. In this work, we propose and compare two novel skull stripping methods based on 2D and 3D convolutional neural networks trained on a large, heterogeneous collection of 2777 clinical 3D T1-weighted MRI images from 1681 healthy subjects. We investigated the performance of the models by testing them on 927 images from 324 subjects set aside from our collection of data, in addition to images from an independent, large brain imaging study: the IXI dataset (n = 556). Our models achieved mean Dice scores higher than 0:978 and Jaccard indices higher than 0:957 on all tests sets, making predictions on new unseen brain MR images in approximately 1.4s for the 3D model and 12.4s for the 2D model. A preliminary exploration of the models’ robustness to variation in the input data showed favourable results when compared to a traditional, well-established skull stripping method. With further research aimed at increasing the models’ robustness, such accurate and fast skull stripping methods can potentially form a useful component of brain MRI analysis pipelines.publishedVersio

    2D and 3D U-Nets for skull stripping in a large and heterogeneous set of head MRI using fastai

    No full text
    Skull stripping in brain imaging is the removal of the parts of images corresponding to non-brain tissue. Fast and accurate skull stripping is a crucial step for numerous medical brain imaging applications, e.g. registration, segmentation and feature extraction, as it eases subsequent image processing steps. In this work, we propose and compare two novel skull stripping methods based on 2D and 3D convolutional neural networks trained on a large, heterogeneous collection of 2777 clinical 3D T1-weighted MRI images from 1681 healthy subjects. We investigated the performance of the models by testing them on 927 images from 324 subjects set aside from our collection of data, in addition to images from an independent, large brain imaging study: the IXI dataset (n = 556). Our models achieved mean Dice scores higher than 0:978 and Jaccard indices higher than 0:957 on all tests sets, making predictions on new unseen brain MR images in approximately 1.4s for the 3D model and 12.4s for the 2D model. A preliminary exploration of the models’ robustness to variation in the input data showed favourable results when compared to a traditional, well-established skull stripping method. With further research aimed at increasing the models’ robustness, such accurate and fast skull stripping methods can potentially form a useful component of brain MRI analysis pipelines

    2D and 3D U-Nets for skull stripping in a large and heterogeneous set of head MRI using fastai

    No full text
    Skull stripping in brain imaging is the removal of the parts of images corresponding to non-brain tissue. Fast and accurate skull stripping is a crucial step for numerous medical brain imaging applications, e.g. registration, segmentation and feature extraction, as it eases subsequent image processing steps. In this work, we propose and compare two novel skull stripping methods based on 2D and 3D convolutional neural networks trained on a large, heterogeneous collection of 2777 clinical 3D T1-weighted MRI images from 1681 healthy subjects. We investigated the performance of the models by testing them on 927 images from 324 subjects set aside from our collection of data, in addition to images from an independent, large brain imaging study: the IXI dataset (n = 556). Our models achieved mean Dice scores higher than 0:978 and Jaccard indices higher than 0:957 on all tests sets, making predictions on new unseen brain MR images in approximately 1.4s for the 3D model and 12.4s for the 2D model. A preliminary exploration of the models’ robustness to variation in the input data showed favourable results when compared to a traditional, well-established skull stripping method. With further research aimed at increasing the models’ robustness, such accurate and fast skull stripping methods can potentially form a useful component of brain MRI analysis pipelines
    corecore